Journal of Energy Chemistry
ISSN 1003-9953
     
Journal of Energy Chemistry 2013, Vol. 22 Issue (3) :512-516    DOI:
Current Issue | Next Issue | Archive | Adv Search << Previous Articles | Next Articles >>
Promoting effect of chloride ions on selective oxidation of methanol to methyl formate over zirconia-supported ruthenium oxide catalysts
Weizhen Li, Hongpeng Zhang, Xiaohui He, Haichao Liu
Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The effect of chloride ions on a monoclinic ZrO2-supported RuOx (RuOx/m-ZrO2) catalyst with a Ru surface density of 0.3 Ru/nm2 was studied in the selective oxidation of methanol to methyl formate (MF) at a low temperature of 373 K. The m-ZrO2 support was Cl-free, and Cl- ions were introduced into the RuOx/m-ZrO2 catalyst by impregnation with zirconium oxychloride or ammonium chloride and subsequent thermal treatment in air at 673 K. The structures of these catalysts were characterized by X-ray diffraction, Raman and X-ray photoelectron spectroscopies. Their reducibility was probed by temperature-programmed reduction in H2. The RuOx domains were present as highly dispersed RuO42- structure on m-ZrO2 with similar reducibility for the RuOx/m-ZrO2 samples irrespective of modification with or without Cl- ions. Introduction of appropriate amounts of zirconium oxychloride into RuOx/m-ZrO2 led to a remarkable increase in the methanol oxidation rate and MF selectivity, whereas introduction of ammonium chloride or zirconyl nitrate significantly inhibited the catalytic performance of RuOx/m-ZrO2. The promoting effect of Cl- ions derived from zirconium oxychloride can be tentatively attributed to their roles in facilitating the adsorption of methanol and desorption of MF product or its intermediates. This finding provides novel insights into the promoting effect of Cl- ions on oxides-based catalysts for selective oxidation reactions.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
Weizhen Li
Hongpeng Zhang
Xiaohui He
Haichao Liu
Keywordsmethanol oxidation   ruthenium oxide   monoclinic zirconia   chloride promoting effect   methyl formate     
Received: 2012-06-11;
Fund:

This work was supported by the National Natural Science Foundation of China (20825310 and 20973011) and National Basic Research Project of China (2011CB201400 and 2011CB808700).

Cite this article:   
Weizhen Li, Hongpeng Zhang, Xiaohui He etc .Promoting effect of chloride ions on selective oxidation of methanol to methyl formate over zirconia-supported ruthenium oxide catalysts[J]  Journal of Energy Chemistry , 2013,V22(3): 512-516
URL:  
http://www.jenergchem.org/EN/     或     http://www.jenergchem.org/EN/Y2013/V22/I3/512
 
[1] Tatibouet J M. Appl Catal A, 1997, 148: 213
[2] Chu W, Wang L N, Chernavskii P A, Khodakov A Y. Angew Chem Int Edit, 2008, 47(27): 5052
[3] Tronconi E, Elmi A S, Ferlazzo N, Forzatti P, Busca G, Tittarelli P. Ind Eng Chem Res, 1987, 26: 1269
[4] Huang C D, Bai S L, L? J, Li Z H. Chin J Catal (Cuihua Xuebao), 2011, 32(6): 1027
[5] Ai M. J Catal, 1982, 77: 279
[6] Bai S L, Huang C D, L? J, Li Z H. Plasma Sci Technol, 2012, 14(1): 54
[7] Valente N G, Arrua L A, Cadus L E. Appl Catal A, 2001, 205: 201
[8] Huang C D, Bai S L, L? J, Li Z H. Catal Lett, 2011, 141(9): 1391
[9] Louis C, Tatibouet J M, Che M. J Catal, 1988, 109: 354
[10] Hong J P, Chu W, Chernavskii P A, Khodakov A Y. J Catal, 2010, 273(1): 9
[11] Liu H C, Iglesia E. J Catal, 2004, 223: 161
[12] Rodrigues J J, Pecchi G, Fernandes F A N, Rodrigues M G F. J Nat Gas Chem, 2012, 21(6): 722
[13] Liu H C, Iglesia E. J Phys Chem B, 2003, 107: 10840
[14] Song D C, Li J L. J Mol Catal A, 2006, 247(1-2): 206
[15] Liu H C, Iglesia E. J Phys Chem B, 2005, 109: 2155
[16] Jacobs G, Das T K, Zhang Y Q, Li J L, Racoillet G, Davis B H. Appl Catal A, 2002, 233(1-2): 263
[17] a) Li W Z, Liu H C, Iglesia E. J Phys Chem B, 2006, 110: 23337; (b) Li W Z, Liu H C. Chin J Catal (Cuihua Xuebao), 2006, 27: 840
[18] L? J, Huang C D, Bai S L, Jiang Y H, Li Z H. J Nat Gas Chem, 2012, 21(1): 37
[19] Lee J S, Kim J C, Kim Y G. Appl Catal, 1990, 57: 1
[20] Overett M J, Hill R O, Moss J R. Coordin Chem Rev, 2000, 206: 581
[21] Brunauer S, Emmett P H, Teller E. J Am Chem Soc, 1938, 60(2): 309
[22] Gerard E, Gotz H, Pellegrini S, Castanet Y, Mortreux A. Appl Catal A, 1998, 170: 297
[23] Hong J P, Chu W, Chernavskii P A, Khodakov A Y. Appl Catal A, 2010, 382(1): 28
[24] Tronconi E, Elmi A S, Ferlazzo N, Forzatti P, Busca G, Tittarelli P. Ind Eng Chem Res, 1987, 26: 1269
[25] Zhu H Y, Zhou C H, Ma L, Cheng Z X, Shen J Y. Chin J Catal (Cuihua Xuebao), 2011, 32(8): 1370
[26] Huang H, Li W Z, Liu H C. Catal Today, 2012, 183: 58
[27] Khodakov A Y, Griboval-Constant A, Bechara R, Zholobenko V L. J Catal, 2002, 206(2): 230
[28] Li W Z, Huang H, Li H J, Zhang W, Liu H C. Langmuir, 2008, 24: 8358
[29] Li W Z, Liu H C. Acta Phys-Chim Sin (Wuli Huaxue Xuebao), 2008, 24: 2172
[30] van de Loosdrecht J, Barradas S, Caricato E A, Ngwenya N G, Nkwanyana P S, Rawat M A S, Sigwebela B H, van Berge P J, Visagie J L. Top Catal, 2003, 26(1-4): 121
[31] Zhang S H, Zhang H P, Li W Z, Zhang W, Huang H, Liu H C. Acta Phys-Chim Sin (Wuli Huaxue Xuebao), 2010, 26: 1879
[32] Narita T, Miura H, Sugiyama K, Matsuda T, Gonzalez R D. J Catal, 1987, 103: 492
[33] Rodrigues E L, Bueno J M C. Appl Catal A, 2002, 232(1-2): 147
[34] Zhou X F, Chen Q L, Tao Y W, Weng H X. J Nat Gas Chem, 2011, 20(4): 350
[35] Okal J, Zawadzki M. Catal Lett, 2009, 132: 225
[36] Feller A, Claeys M, van Steen E. J Catal, 1999, 185(1): 120
[37] Moradi G R, Basir M M, Taeb A, Kiennemann A. Catal Commun, 2003, 4(1): 27
[38] G閘in P, Primet M. Appl Catal B, 2002, 39: 1
[39] Kung H H, Kung M C, Costello C K. J Catal, 2003, 216: 425
[40] Liu Y Y, Hanaoka T, Miyazawa T, Murata K, Okabe K, Sakanishi K. Fuel Process Technol, 2009, 90(7-8): 901
[41] Iglesia E, Reyes S C, Madon R J, Soled S L. Adv Catal, 1993, 39: 221
[42] Liu C, Ozkan U S. J Mol Catal A, 2004, 220: 53
[43] Zhou X F, Chen Q L, Tao Y W, Weng H X. Chin J Catal (Cuihua Xuebao), 2011, 32(7): 1156
[44] Liu C, Ozkan U S. J Phys Chem A, 2005, 109: 1260
[1] A. Goosheneshin1, R. Maleki2, D. Iranshahi2, M. R. Rahimpour2, A. Jahanmiri2* .Simultaneous production and utilization of methanol for methyl formate synthesis in a looped heat exchanger reactor configuration[J]. Journal of Energy Chemistry, 2012,21(6): 661-672
[2] Kebing Wang;Jie Yao;Yue Wang;Gongying Wang*.Catalytic Systems Containing p-Toluenesulfonic Acid for the Coupling Reaction of Formaldehyde and Methyl Formate[J]. Journal of Energy Chemistry, 2007,16(3): 286-292
[3] Lin Yu*;Jieyu Xu;Ming Sun;Xuetao Wang.Catalytic Oxidation of Dimethyl Ether to Hydrocarbons over SnO2/MgO and SnO2/CaO Catalysts[J]. Journal of Energy Chemistry, 2007,16(2): 200-203
[4] Liang Chen;Jianghong Zhang;Ping Ning;Yunhua Chen;Wenbing Wu.Kinetics of Methanol Carbonylation to Methyl Formate Catalyzed by Sodium Methoxide[J]. Journal of Energy Chemistry, 2004,13 (4): 225-230
[5] Xinhan Huang;Xiangui Yang;Jiaqi Zhang;Zhaotie Liu.HYDROESTERIFICATION OF ACETYLENE WITH METHYL FORMATE TO METHYL ACRYLATE OVER A NiO/Al_2O_3 CATALYST: EFFECTS OF NiO LOADING AND CALCINATION TEMPERATURE[J]. Journal of Energy Chemistry, 2001,10(1): 42-50
[6] Xinhan Huang;Zhaotie Liu;Jiaqi Zhang;Xiangui Yang;Junwei Wang.EFFECTS OF La AND Bi ON THE CATALYTIC PERFORMANCE OF SUPPORTED NICKEL CATALYST FOR ACETYLENE HYDROESTERIFICATION TO METHYL ACRYLATE[J]. Journal of Energy Chemistry, 2000,9 (3): 197-204
[7] Wenkai Chen;Xingquan Lin;Shizhong Luo;Guohua Liang;Yutang Wu;Zuolong Yu;Zhaoxia Jia.METHANOL AND METHYL FORMATE SYNTHESIS FROM SYNTHESIS GAS OVER CUPROUS CHLORIDE CATALYST IN LIQUID PHASE[J]. Journal of Energy Chemistry, 2000,9 (2): 139-146
[8] Shunfen Li;Hansong Dai;Xiangui Yang;Zhaoxia Jia;Shizhong Luo;Yutang Wu.Cu-Cr BASED CATALYSTS FOR THE SYNTHESIS OF METHANOL AND METHVL FORMATE[J]. Journal of Energy Chemistry, 2000,9 (2): 153-156
[9] Xingquan Liu;Yutang Wu;Wenkai Chen;Shizhong Luo;Zhaoxia Jia;Shunfen Li;Yingchun Yang;Zuolong Yu.CONCURRENT SYNTHESIS OF METHANOL AND METHVL FORMATE FROM SYNTHESIS GAS CATALYZED BY COPPER-BASED CATALYSTS IV. INFLUENCES OF SPACE VELOCITY, REACTION TIME AND IMPURITIES AS WELL AS Cu-Cr MOLAR RATIONS[J]. Journal of Energy Chemistry, 2000,9 (1): 50-58
[10] Xingquan Liu;Wenkai Chen;Yutang Wu;Zhaoxia Jia;Shizhong Luo;Shunfen Li;Yingchun Yang;Zuolong Yu.CONCURRENT SYNTHESIS OF METHANOL AND METHYLFORMATE CATALYZED BY COPPER-BASED CATALYSTS III. INFLUENCES OF CONCENTRATIONS OF CATALYSTSAND PROMOTERS[J]. Journal of Energy Chemistry, 1999,8 (4): 286-293
[11] Xingquan Liu;Yutang Wu;Shizhong Luo;Yingchun Yang;Zhaoxia Jia;Shunfen Li;Wenkai Chen;Zuolong Yu.CONCURRENT SYNTHESIS OF METHANOL AND METHYL FORMATE CATALYZED BY COPPER-BASED CATALYSTS II.INFLUENCES OF SOLVENTS AND H2/CO MOLE RATIOS[J]. Journal of Energy Chemistry, 1999,8 (3): 203-210
[12] Xingquqn Liu;Yutang Wu;Wenkai Chen;Shizhong Luo;Shunfen Li;Zhaoxia Jia;Yingchun Yang;Zuolong Yu.CONCURRENT SYNTHESIS OF METHANOL AND METHYL FORMATE CATALYZED BY COPPER-BASED CATALYSTS I. INFLUENCES OF TEMPERATURE AND PRESSURE[J]. Journal of Energy Chemistry, 1999,8 (2): 115-120
[13] Shizhong Luo;Yutang Wu;Aimin Liu;Weizhu An;Zhaoxia Jia.STRONG POLAR APROTOGENIC COMPOUNDS AS PROMOTERS IN CATALYTIC SYSTEM FOR METHANOL CARBONYLATION TO METHYL FORMATE[J]. Journal of Energy Chemistry, 1999,8 (1): 53-60
[14] Shizhong Luo;Yutang Wu;Aimin Liu;Weizhu An;Zhaoxia Jia.PROMOTERS IN THE CATALYST SYSTEM FOR METHANOL CARBONYLATION TO METHYL FORMATE[J]. Journal of Energy Chemistry, 1998,7 (4): 306-312
[15] Xingquan Liu;Zhaoxia Jia;Yutang Wu;Zuolong Yu.TRANSESTERIFICATION OF METHANOL WITH ETHYL ACETATE AND ETHANOL WITH METHYL FORMATE CATALYZED BY DBN[J]. Journal of Energy Chemistry, 1998,7 (4): 313-318
Copyright 2010 by Journal of Energy Chemistry